Search results for "LORENTZ VIOLATION"

showing 3 items of 3 documents

Tau neutrinos in the next decade: from GeV to EeV

2022

Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.

HIGH-ENERGY NEUTRINOSMAGNETIC-MOMENTAstrophysics and AstronomyNuclear and High Energy PhysicsRADIO PULSESPhysics::Instrumentation and Detectorstau neutrinosFOS: Physical sciencesCHERENKOV LIGHT YIELDGeV530High Energy Physics - Experimenttau neutrino theorySubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)neutrino experimentsSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Particle Physics - PhenomenologyAIR-SHOWERSLEPTON FLAVORastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)hep-exPhysicshep-phtau neutrinos; neutrino experiments; tau neutrino theorylandscapeCOSMIC-RAYSHigh Energy Physics - PhenomenologyQUANTUM-GRAVITYCHARGED-PARTICLES[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]beam dumpPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLORENTZ VIOLATION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - Experiment
researchProduct

Limits on neutrino Lorentz violation from multimessenger observations of TXS 0506+056

2019

The observation by the IceCube Collaboration of a high-energy ($E \gtrsim 200$ TeV) neutrino from the direction of the blazar TXS 0506+056 and the coincident observations of enhanced $\gamma$-ray emissions from the same object by MAGIC and other experiments can be used to set stringent constraints on Lorentz violation in the propagation of neutrinos that is linear in the neutrino energy: $\Delta v = - E/M_1$, where $\Delta v$ is the deviation from the velocity of light, and $M_1$ is an unknown high energy scale to be constrained by experiment. Allowing for a difference in neutrino and photon propagation times of $\sim 10$ days, we find that $M_1 \gtrsim 3 \times 10^{16}$ GeV. This improves …

High Energy Physics - TheoryNuclear and High Energy PhysicsHigh energyParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)Lorentz transformationgr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesComputer Science::Digital LibrariesGeneral Relativity and Quantum CosmologyIceCubesymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Coincident0103 physical sciences010306 general physicsBlazarParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEMultimessenger010308 nuclear & particles physicsGeneral Relativity and Cosmologyhep-thHigh Energy Physics::PhenomenologyLorentz violationGamma rayhep-phlcsh:QC1-999High Energy Physics - PhenomenologyPhoton propagationHigh Energy Physics - Theory (hep-th)Astrophysical neutrinosVelocity of lightsymbolsastro-ph.COHigh Energy Physics::ExperimentNeutrinoTXS 0506+056Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - Theorylcsh:PhysicsBlazarsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics Letters
researchProduct

Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses

2011

The sidereal time dependence of MiniBooNE ν[subscript e] and ν[over-bar][subscript e] appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov–Smirnov (K–S) test shows both the ν[subscript e] and ν[over-bar][subscript e] appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the ν[subscript e] appearance data prefer a sidereal time-independent solution, and the ν[over-bar][subscript e] appearance data slightly prefer a sidereal…

Particle physicsNuclear and High Energy PhysicsNeutrino oscillationPhysics::Instrumentation and DetectorsLorentz transformationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesMiniBooNEPartícules (Física nuclear)High Energy Physics - ExperimentNuclear physicsMiniBooNEsymbols.namesakeHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Violació CP (Física nuclear)Standard-Model ExtensionStatistical analysisNeutrino oscillationPhysicsOscillationNull (mathematics)High Energy Physics::PhenomenologyLorentz violationHigh Energy Physics - PhenomenologySidereal timesymbolsHigh Energy Physics::ExperimentPhysics Letters B
researchProduct